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ABSTRACT 

This paper  is devoted to the first steps towards a systematic s tudy of 

pro-p groups which are analytic over a commutat ive  Noetherian local 

pro-p ring A, e.g. A = Fp[[t]]. We restrict our at tent ion to A-standard 

groups, which are pro-p groups arising from a formal group defined over 

A. Under some additional assumptions  we show tha t  these groups are of 

' intermediate growth '  in various senses, strictly between p-adic analytic 

pro-p groups and free pro-p groups. This suggests a refinement of Lazard's 

theory which stresses the dichotomy between p-adic analytic pro-p groups 

and all the others. In the course of the discussion we answer a question 

posed in [LM1], and settle two conjectures from [Bo]. 

1. I n t r o d u c t i o n  

Let (A, M) be a complete commutat ive Noetherian local ring whose residue field 

A/M is finite, say A/M = Fq where q = pC (p a prime). The goal of this paper  

is to present various properties of pro-p groups which are analytic over A. Our 

initial interest was in the case A = Fp [[t]]. In this case the field of fractions 

K = Fp((t)) is ultrametric and so basic results on analytic groups over K can 

be found in Serre [S] and Bourbaki [B]. In particular it is shown in [S] that  

such groups have open subgroups, called standard, which arise from a formal 

group defined over Fp [[t]]. This reduces, to some extent, the study of analytic 

groups over K to the investigation of the standard ones. While carrying out this 
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investigation we realized that almost all our results can be extended to standard 

groups over general rings A. Our results do not require a complete theory of 

A-manifolds and analytic groups over A, but they call for the development of 

such a theory. 

There are several motivations for looking at A-analytic groups: 

1. The special case A = Zp (the ring of the p-adic integers) whose study 

was initiated by Lazard [La] led to a beautiful theory which turned to have 

many applications to abstract groups; see [DDMS] and the references therein. In 

particular, Lazard's solution of Hilbert's 5th problem for p-adic Lie groups led to 

a characterization of finitely generated linear groups in characteristic zero [Lu2]. 

It is hoped that a better understanding of A-analytic groups, especially in the 

case A = Fp [[t]], would lead to similar applications in positive characteristic. 

2. Understanding A-analytic groups seems an essential step in developing a 

reasonable structure theory of pro-p groups. We mention briefly two particular 

aspects of such a theory. The first is the study of certain growth functions as- 

sociated with a finitely generated pro-p group G, such as its subgroup growth 

(see [Se],[LM2],[Sh],[SS]). It is still not known which types of growth a pro-p 

group can have, and the analysis of A-analytic groups is relevant in this con- 

text. The second aspect is related to presentations of pro-p groups, and to the 

derivation of the Golod Shafarevich inequality for certain types of groups (see 

[K],[Lul],[W],[WZ]). In the long run we also aim at classification theorems for 

pro-p groups, in which the A-analytic groups would form an important building 

block. 

3. In [M] and [Bo] Mazur and Boston study deformation spaces of p-adic 

representations of some pro-p Galois groups. Such a deformation space defines 

a single representation p of G into GLn(A) for a suitable local ring A of the 

type considered here. The image of G is a closed subgroup of GLn(A) (which 

is A-analytic), and thus information on closed subgroups of A-analytic groups is 

relevant in the study of the representation p. 

Let us now outline the content of this paper. 

In section 2 we define A-standard groups and study their basic properties. The 

basic examples are the congruence subgroups Ker(SLn(A) ~ SLy(A/M)).  The 

main result of section 2 states that,  unless A is a finitely generated Zp-module, 

a A-standard group is n o t  p-adic analytic. 

To every A-standard group we associate a Lie algebra, which is our main tool 
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in most of the group-theoretic applications. Our Lie algebra is not the classical 

Lie algebra associated with the group, but rather a graded version of it. This 

graded version was defined (in the ultrametric case) in [S],[B] and [La], but it 

seems that it is put to use here for the first time. 

In section 3 we restrict ourselves to an important subclass of standard groups, 

the class of A-perfect groups. While A-standard groups may not be finitely 

generated, the A-perfect ones are. We compute the lower central series of a 

A-perfect group G and derive some abstract group-theoretic consequences. A 

Hilbert Poinear6 series is then associated to G and we relate it to the Hilbert 

Poincar4 series of the ring A, thus deducing the rationality of the first from that 

of the latter. 

Section 4, which contains the main results of this paper, deals with growth 

functions associated with a A-perfect group G. The group-theoretic questions 

are reduced to Lie-theoretic ones, which are then solved using methods of a 

combinatorial flavour. The results illustrate that,  in the non p-adic analytic 

case, the A-perfect groups form 'medium-sized' pro-p groups - not 'as small' a.'~ 

Zp-analytic groups, and not 'as large' as (non-abelian) free pro-p groups. This 

leads to a refinement of the work of Lazard, who stressed the dichotomy between 

Zp-analytic pro-p groups and all the rest. 

For example, let an = an(G) denote the number of open subgroups of index n 

in a pro-p group G. If G is a finitely generated (non-abelian) free pro-p group, 

then {an } grows exponentially with n[I]. On the other hand {an } grows (at most) 

polynomially for p-adic analytic groups (and this property actually characterizes 

them [LM2]). In [Sh] it is shown that, if G is not p-adic analytic, then a,~ > 

ncl~ ~ for infinitely many values of n, where c is any constant less than 1/8. 

We show in Theorem 4.4 that any A-perfect group satisfies an < n cl~ ~ for 

all n, where c is a fixed constant (depending on G and A). We see that,  in a way, 

A-perfect groups have minimal subgroup growth among the non p-adic analytic 

groups. 

A similar phenomenon occurs with respect to another growth function, defined 

by gn ---- gn (G)  --- max{d(H) I H Co G, (G: H) = n}, where d(H) denotes the 

(minimal) number of generators of H (as a topological group). Here {gn} is 

bounded for p-adic analytic groups, grows logarithmically for A-perfect groups, 

and grows linearly for free pro-p groups. 
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We also study the lower  r a n k  of a pro-p group G, defined by 

l iminf{d(H) l H  C_o G}, 

and show that it is finite in every A-perfect group which is defined over the prime 

subring of A. In [LM1] it is asked whether the finiteness of the lower rank already 

implies that the group is p-adic analytic. Since A-perfect groups are usually not 

p-adic analytic, a negative answer follows at once. 

In section 5 we relate presentations of some arithmetic groups F over global 

rings such as Fq [t] to presentations of some Fq [[t]]-analytic groups G. We use 

it on the one hand to show that some of these groups G are finitely presented. 

On the other hand we show, implementing growth results from section 3, that 

in the A-perfect case G satisfies the Golod-Shafarevich inequality, and use this 

to derive a related inequality for the given arithmetic group F. This generalizes 

results of [Lull from characteristic zero to characteristic p. 

The last section deals with two conjectures of Boston, made in [Bo]. The first 

states that  a certain pro-p Galois group H does not have a faithful representation 

into GL2(A) for any A. The second asserts that the rate of growth of the number 

of generators of open subgroups is 'moderate'  for closed subgroups of GL2(A). 

We show that the second conjecture does not hold for arbitrary closed subgroups, 

though an essentially sharper bound holds for open subgroups. However, applying 

results of Romanovskii [R] and Zubkov [Zu], we confirm the first conjecture of 

Boston. 

Finally, we would like to draw attention to a number of problems in this area 

which, to our mind, are of fundamental importance. 

1. Various necessary conditions for a pro-p group to have the structure of a A- 

perfect group are given here; but can we find conditions which are also sufficient? 

namely, can we obtain an abstract characterization of A-perfect pro-p groups (or 

of more general groups with analytic structure over A)? 

We note that the so-called Nottingham group, namely, the group of normalized 

automorphisms of Fp [[t]], shares many properties with Fp [[t]]-perfect groups. For 

example, it has finite lower rank, and its subgroup growth is of the type n cl~ 

However, it is easy to see that the Nottingham group is not Fp [[t]]-perfect (see 

section 3); moreover, since this group is not linear over any field, it is probably not 

analytic over Fp [[t]]. For these, and other properties of the Nottingham group, 

see [LGSW]. 
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2. It would be interesting to know whether A-standard (or A-perfect) groups 

are always linear. It is not difficult to verify that,  if the associated Lie algebra 

of the group G has trivial center, then the adjoint representation of G on its Lie 

algebra is faithful, and so the group is linear. But, as in the p-adic case, it may 

well be that this condition on the Lie algebra is not essential. 

3. For various purposes it is important to find out which pro-p groups can 

be obtained as closed subgroups of A-perfect groups. We conjecture here that 

(non-abelian) free pro-p groups cannot be obtained in this way. This question is 

related to the notion of pro-p identities in pro-p groups. See [Zu] and section 3 

for more details. 

We would like to thank the referee for his detailed and helpful comments on 

an earlier version of this manuscript. 

Notation: This is rather standard. For topological groups H, G we write H C_c G 

(H C_o G) if H is a closed (open) subgroup of G. Group commutators are denoted 

by (x, y) = x - l y - l x y ,  to be distinguished from Lie products [x, y]. G' stands for 

the commutator subgroup (the derived subalgebra) of a group (a Lie algebra) G. 

If G is a topological group, then G ~ is understood to be closed. For a pro-p group 

G, 7~ = 7~(G) denote its (closed) lower central series, and G p is the (closed) 

subgroup generated by all pth powers in G. Dn - -  D , (G )  is the n th  dimension 

subgroup of G in characteristic p (see [Pa]). O(G) denotes the Frattini subgroup 

of G, which coincides with G~G p. 

The profinite and pro-p completions of an abstract group F are denoted by 

and G~ respectively. Ao denotes the prime subring of A, that  is, the closed 

subring generated by 1 in A. We shall usually assume that A is infinite. The 

Cartesian product of d copies of a set S is denoted by S (d). We say that  a series 

{am} grows polynomially if there exists a polynomial P such that  a~ <_ P(n)  for 

all n. The lower and upper integral parts of a real number r are denoted by [rJ 

and [r] respectively. 

The Nottingham group over Fp, which we denote by Nott(p), is the group of 

automorphisms of the ring Fp [[t]] acting trivially on tFp [[t]]/t2Fp [It]]. It may be 

identified with the group of all power series of the form t + a2t 2 + a3 t3 q- . . .  

(ai E Fp) under substitution. 
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2. A - S t a n d a r d  g r o u p s  

Consider the local ring (A, M). Since M is topologically nilpotent, every power 

series F C A[[X~,. . . ,Xd]]  gives rise to a well-defined function M (d) ~ A, 

which, by abuse of notation, will be denoted by F. Similarly, if F lies in 

A[[X1, . . . ,  Xd]] (k), then it gives rise to a well-defined function F: M (d) ~ A(k). 

We shall refer to these functions as functions expressed by power series. Of 

course, these functions form a subfamily of the set of analytic functions, which 

are locally expressed by power series. 

Recall that  a d-dimensional power series F C h i [X1 , . . . ,  X2d]] (d) is a f o r m a l  

g r o u p ,  if it satisfies 

F(X,  O) = F(O, Y) = O, 

and 

F(F(X,  Y), Z) = F(X,  F(Y, Z)). 

These conditions imply the existence of an 

I e A[[X1, . . . ,  Xd]] (a) satisfying 

inverse power series 

I (X)  = - X  + non-linear term 

and 

F(I (X) ,  X )  = F(X,  I (X) )  = O. 

For background on formal groups, see Hazewinkel [H]. 

Definition 2.1: A d-dimensional A - s t a n d a r d  g r o u p  is a pair (M (d), F) such that  

F is a d-dimensional formal group defined over A. 

It  is clear that,  by identifying F with a function from M (a) x M (d) t o  M (d) 

as above, we obtain a binary operation o n  M (d) which makes it into a topolog- 

ical group, in which 0 is the identity element. We shall not always distinguish 

between this group and the pair (M (d), F). However, it should be emphasized 

that  different standard groups may give rise to isomorphic topological groups (see 

below). Another point which may need clarification is that,  while the dimension 

d above will usually be positive, the trivial group {1} should be considered as a 

standard group of dimension zero. 

The theory of formal groups is particularly developed in the 1-dimensional 

case, due to work by Dieudonn6, Lazard and others. For example, it is known 

that  for a ring A without nilpotent torsion elements, every 1-dimensional formal 
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group defined over A is commutative [H, p.38]. A similar result follows at once for 

A-standard groups. However, there are usually infinitely many non-isomorphic 

1-dimensional formal groups over A. 

It is shown in IS, p.116] that every Lie group G over an ultrametric field K has 

an open subgroup which may be identified with a A-standard group, where A is 

the valuation ring of K. It is therefore clear that information on Fp [[t]]-standard 

groups wilt have immediate applications to the structure of arbitrary analytic 

groups over Fp ((t)). 

Example 2.2: (1) The additive group (M, +) is a l-dimensional standard group. 

(2) The multiplicative group (1 + M, .) of normalized units can be identified 

with the 1-dimensional standard group (M, F)  where F(X, Y) = X + Y + XY. 

(3) Let SLy(A) = Ker(SLm(A) ~ SLm(A/M)) be the first congruence sub- 

group of SLm(A). Then SLy(A) may be given the structure of an rn ~ - 1- 

dimensional A-standard group. Indeed, given rn 2 - 1 coordinates xij E M, where 

1 _< i, j < m and (i, j )  # (m, m), there exists a unique matrix y = (Y~d) C SL~ (A) 

satisfying y~j = x~j for i # j ,  and Yii = 1 + x~ for i < rn; moreover, all the ma- 

trices in SLy(A) are obtained in this way. This enables us to identify SLy(A) 

with M (m~-l). It is then easy to see that multiplication is given by a single 

m 2 - l-dimensional formal group F, which is defined over the prime subring A0. 

Consider the case A = Fp [[t]], M = tA. Then (M (2), +) ~ (M, +) as topolog- 

ical groups; we see that the same topological group can have different standard 

structures (of different dimensions). This phenomenon, which cannot occur in 

the p-adic case (where the dimension is determined by the group structure [La]), 

indicates an inherent difficulty of the subject. 

For a closed subring N of M and a standard group G = (M (d), F), we let 

G(N) denote the subset N (d) of G. Note that, if either F is defined over the 

prime subring A0, or N is an ideal of A, then G(N) is in fact a closed subgroup 

of the topological group G. More generally, if R is any ring such that F gives rise 

to a well-defined function R (2d) ----* R (a) we let G(R) denote the group (R (a), F). 

The next result is just a slight extension of results from IS] and [B], dealing with 

the case where A is a discrete valuation ring. We need some notation. Given a 

(d-dimensional) formal group F,  let C(X, Y) be the (d-dimensional) power series 

expressing commutation, namely 

C(X, Y) = F(I(X) ,  F(I(Y),  F(X, Y))), 
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where I (X)  is the inverse power series. Similarly, we let P~(X) be the power 

series corresponding to taking i th powers. It  follows from the definition of a 

formal group that  

c ( x , o )  = c ( o , v )  = o a n d  P (Pj(X)) = Pj(P{(X)) = P{j(X). 

Note that,  over certain rings A commutat ion (or taking i th powers) in the stan- 

dard group (M (d), F)  may also be expressed by some other power series, but for 

our purpose here this does not really matter.  

LEMMA 2.3: Let I, J be proper ideals of A. 

(1) a ( I )  <1 a. 

(2) If  J C_ I then G(I ) /G(J)  ~ G(I/J)." 

(3) (G(I), G(J)) c G(IJ). 
(4) a(i)p c a(zp + pI). 

Proof: Parts  (1),(2) are easily verified. For part  (3), consider the power series 

C(X, Y). It  follows from the above remarks that  each monomial occuring in 

C(X, Y)  involves some Xi and some Yj, so (3) easily follows. 

Let us prove (4). Consider the power series P = Pp(X), which corresponds to 

the power map g ~-~ gP in G. In order to prove (4) it suffices to show that  every 

monomial in P whose coefficient is not divisible by p has (total) degree at least p. 

Consider PI(X)  for 0 < i < p. Note that  PdX)  = iX  + 5~(X) where ~i consists 

of non-linear terms. Since P(Pi(X))  = Pi(P(X))  we have 

P( iX  + 6i(X)) = iP(X)  + 61(P(X)). 

Now, among the monomials in P whose coefficients are not divisible by p, 

choose one, say Z, with minimal degree. Looking at the coefficients of Z in both 

sides of the above equation, we obtain i k - i mod p, where k = deg(Z). Taking 

i to be a primitive element modulo p we deduce that  k > p, as required. | 

The following filtration associated with a A-standard group G will be of some 

use in what follows. 

Definition 2.4: For a standard group G = (M (d), F),  set G~ = G(M n) (n > 1). 

The basic properties of {Gn} are summarized below. 

LEMMA 2.5: For positive integers n, m we have: 

(1) an <1 a. 
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(2) Gn/Gn+l is a finite elementary abelian p-group. 

(3) (Gn, Gin) C_ an+re. 

(4) I fpA = 0 then (Gn) p C Gpn. 

(5) a = limC/Gn. 

The proof is an easy application of 2.3. 

COROLLARY 2.6: Every A-standard group is a pro-p group. 

Since {Gn} is a central series, we have Gn _D 7,(G) for all n. The case of 

equality is discussed in the next section. If A has characteristic p then {Gn} is 

an Np-series (in the sense of [Pa, Chapter 30, and consequently G,~ D_ Dn(G), 

the nth  dimension subgroup of G over Fp. 

We can now prove the first significant result of this section; it shows that  A- 

standard groups are not p-adic analytic, unless A is finitely generated as a p-adic 

module. 

THEOREM 2.7: Let G ~ {1} be a A-standard group. Then G is p-adic analytic 

ff and only if A/pA is finite. 

Proo~ If A/pA is finite, then A is finitely generated as a Zp-module by Nakaya- 

ma's Lemma [AM, pp.21-22], and this implies that  G is p-adic analytic. So let 

us prove the other direction. 

Suppose G is p-adic analytic. Then so is G/G(pA) ~- G(M/pA). Thus we may 

assume pA=0, and have to show that  A is finite. 

Suppose not, and consider the sections Gn/G~ (n > 1). By 2.5 they are all 

elementary abelian. Since A is infinite and the quotients AIM '~ are all finite, 

we see that  M is not nilpotent. Therefore the series {M i} is strictly decreasing. 

This yields 

2n--i  2n--I  

lan/G2nl = H ]ai/Gi+ll = I I  IMi/Mi+lld >_pdn. 
i = n  i-~n 

Since r C_C_ G2n we see that d(G) >_ dn for all n, so in particular d(G~) 

c~ with n. Therefore G has infinite rank. Applying [LM1] we see that  G is not 

p-adic analytic. | 

COROLLARY 2.8: IT/ a topological group G is analytic both over Zp and over 

F v [[t]], then it is discrete (hence finite in the compact case). 
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Proof: G has an open subgroup H which is a standard Fv [[t]]-group. H is p-adic 

analytic, since it is an open subgroup of the p-adic analytic group G. Applying 

2.7 we obtain a contradiction, unless H = {1}. We conclude that {1} is open in 

G, and so the topology of G is discrete. | 

We now construct, following [S, I Chap. II, Prop. 2.3 (4)] and [B, III section 

7.4], a Lie algebra associated with a A-standard group G. It should be stressed 

that,  in general, this is not the usual Lie algebra associated to G, but rather a 

certain graded version of it. This graded Lie algebra will serve as an important 

tool in studying the group-theoretic properties of G. 

Definition 2.9: Let G be a A-standard group, and let {Gn} be the filtration 

associated with it. Let L~ = L,~(G) = G,/Gn+I considered as an Fq-space, 

and let L = L(G) = 1-I,~>l Ln be the Cartesian product of these spaces. For 

x E Gn, y E G,~ set 

[xGn+l, yGm+l] = (x, y)G,~+m+l. 

Extend [, ] to non-homogeneous elements by linearity. Using property 2.5(3) of 

{G~}, it follows that  this definition makes sense, and that  L is a Lie algebra. We 

clearly have [Ln, Lm] c_ Ln+m, so L is graded over the natural numbers. If A has 

characteristic p, we may define a formal pth power in L by 

(xG~+l) [pl = xPGp,~+l, 

where x E Gn (see 2.5(4)). Then L becomes a restricted Lie algebra satisfying 

L[, p] C_ Lp~ (see [J] for a background on restricted Lie algebras). 

Remark 2.10: 

(1) Note that L(G) is a Lie algebra over the finite residue field Fq = A/M of 

characteristic p, even when A has characteristic zero. As an Fq-Lie algebra L(G) 

is infinite-dimensional if IAI = c~. 

(2) Let gr(A) = I-In>0 gr~(A) = 1-In>0 Mn/M~+] be the complete graded ring 

associated with A, and let gr(M) = I1~>1 Mn/Mn+l be its maximal ideal. Then 

L(G) has a natural structure of a gr(A)-module. Moreover, as a gr(M)-module, 

L(G) is free of rank d = dim(G), that is L(G) ~- gr(M) (d). 

(3) Let C(X, Y) be the commutation power series as before. Then C gives 

rise to a well-defined binary operation on gr(M) (u) which we denote by gr(C). 

By definition, gr(C) is a graded operation, i.e. it sends gr~(A) (d) • grin(A) (u) to 
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gr~+,~(A)(d). From our definition of L(G) it follows that this operation coincides 

with the Lie product in L(G). Therefore 

L(G) ~- (gr(M) (d), +, gr(C)). 

(4) It follows from previous remarks that C(X, Y) has no linear terms, and 

that its quadratic part is bilinear in X, Y. Let C2(X, Y) be the reduction of that 

quadratic part modulo M. Then C2(X, Y) is a bilinear fonn defined over Yq. 
Observe that  monomials of degree greater than 2 in C(X,Y), and monomials 

whose coefficients belong to M will not effect the binary operation gr(C). Thus 

gr(C) coincides with the binary operation defined by C2 on gr(M) (d). 

We see that L(G) ~- (gr(M)(d), +, C2). In particular, L(G) has the structure 

of a Lie algebra over gr(A) (or gr(M)). 

(5) Let L0 = Lo(G) = (gr0(A) (d),+,C2) = (F~ d),+,C2). Then L0 is a d- 

dimensional Lie algebra over Fq, and we have 

L(G) ~- Lo(G) | gr(M). 

The finite Lie algebra Lo(G) constructed above will play an important role in 

what follows. 

It is easy to verify that our construction of L(G) is compatible with that of 

[H, pp.79-81]. More precisely, it is shown in [H] that, if F(X, Y) is a formal 

group law and F2(X, Y) is its quadratic part, then the bilinear form IX, Y] = 

F2(X, Y) - F2(Y, X) satisfies the Jacobi identity. Now, the Lie algebra L(G) is 

obtained by applying that form to gr(M) (d). 

Example 2.11: (1) Let A = Fp[[t]], M = tA, and let G = SLim(A). Then it is easy 

to verify that L(G) ~- sire(M) ~ sLm(p) | M. 
(2) If A = Zp then gr(A) =~ Fp[[tl]. The Lie algebra associated with SLm(Zp) 

is therefore isomorphic to that of SL~(Fp[[t]]) (without the restricted structure), 

since Lo(G) coincide for these two groups. 

We now define the Lie subalgebra of L(G) associated with a closed subgroup 

HC_G. 

Definition 2.12: For a A-standard group G and a closed subgroup H, set K(H) = 
1--[n>l Kn(H), where Kn(H) = (H A an)Gn+l/Gn+l C Ln(a). Observe that, in 

general, K(H) is an Fp-space, but not a gr(A)-module (it may not even be an 

Fq-Space if q ~ p). 
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The following properties are easily verified. 

LEMMA 2.13: 

(1) K(H)  is a graded Lie subalgebra of L(G), considered as a Lie algebra over 

•p" 
(2) If  pA=O then K(H)  is a restricted subalgebra. 

(3) I f  H 4 a then K ( H )  is a Lie ideal in L(G). 

(4) K(G) = L(G) and K(H1) D_ K(H2) if H~ D_ H2. 

(5) K((H1,/-/2)) _D [K(H1), K(H2)]. 

(6) I f  pA = 0 then K ( H  p) D_ K(H)[P]. 

(7) I f  Hi D_ H2 then (K(H1): K(H2)) = (Hi: H2) (where both sides may 

be infinite). In particular, (G: H) is finite if and only if K (H)  has finite 

co-dimension in L( G). 

3. A-Perfec t  g roups  

In this section we restrict our attention to a subclass of A-standard groups, 

which we call A-perfect. Unlike general A-standard groups, the A-perfect ones 

are always finitely generated, and their structure turns out to be rather rigid. 

Definition 3.1: Let G be a A-standard group, and let Lo = Lo(G) be the finite 

Lie algebra associated with it (see 2.10). We say that G is a A-perfect  g roup  

if Lo is a perfect Lie algebra (i.e. L~ = L0). 

Since L(G) = 1-I Ln ~- Lo| where Ln corresponds to Lo|  '~+1, we 

see that  G is perfect if and only if [Ln, Lm] = L,~+m for all n, m _> 1. For example, 

note that the A-standard groups SLy(A) are all perfect, unless p = m = 2. 

While the filtration {Gn} cannot always be described group-theoretically, we 

do have such a description in the A-perfect case. 

PROPOSITION 3.2: Let G be a A-perfect group. Then, 

(1) (Gn, G,~) = G,~+m for ali n, m. 

(2) {Gn} coincides with the lower ventral series (Tn} of G. 

(3) / f pA= 0  then Gn = D~(G), the nth dimension subgroup of G over Fp. 

Proo~ (1) Let L(G) = 1-I Ln . Then [L~, Lm] = Ln+m, from which it follows 

that,  (Gn, Gm)G~+m+l = Gn+m for all n, m. We argue, by induction on k > 1, 

that  (Gn, G,,~)G~+m+k = Gn+m for all n, m, the case k = 1 having already been 
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established. Assuming this for k we get 

(Gn, Gm)Gn+ra+k+l = (Gn, Gm)(Gn, Gm+l)Gn+(m+l)+k 

= (Gn, Gm)Gn+(~+l) = Gn+,~, 

as required. 

Since (G,~, Gm) is closed (by definition), it follows that (G,~, Gin) = Gn+m. 

(2) Follows from (1). 

(3) We always have D,~ _D "~n, so applying (2) we get Dn _D Gn. On the other 

hand, {Gn} is an Np-series (by 2.5), and {D,~} is the minimal Np-series in G (see 

[Pa, Chapter 3]). Therefore we have equality. | 

Remark 3.3: It is easy to see that the equality G2 = "y2 already implies A- 

perfectness in standard groups. Therefore {G~} coincides with {~'n} if and only 

if G is A-perfect. 

The following result provides some necessary group-theoretic conditions for a 

pro-p groups to have the structure of a A-perfect group. 

COROLLARY 3.4: Let G be a A-perfect group. 

(1) G is finitely generated; in fact d( G) = dim(G) dim~p ( M / M2). 

(2) (')'n, 3'm) = 3',~+m for ali n, m. 

(3) The sections "~n/'~n+l a r e  elementary abelian finite p-groups. 

(4) If  pA = 0 then "~/'yp~ has exponent p, and ~'n --- D.(G) for a11 n. 

Proof: Parts (2)-(4) follow immediately from 2.5 and 3.2, so we only have to 

prove (1). Note that  G2 _D ~(G) = 72(G) (as G/G2 is elementary abelian). 

However, G2 = ~/2 by 3.2. Hence G~ = r 

Setting d = dim(G) we conclude that 

d(G) = dim~, ( a / e ( a ) )  = dim~, (el~G2) 

= dim~, ((M/M2) (d)) = d. dim~p (M/M2), 

as required. | 

We now turn to the study of some arithmetic invariants associated with a 

A-perfect group G. We need some notation. Set, 

c,~ = dim~,(V~/7,+l), d ,  = dim~,(Dn/D,+l).  
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Let fc(z)  = E n ) l  cnzn be the generating fimction of {cn}. 

augme~ltation ideal of the group ring FpG, and put 

rn =- dimFp ( A n / A n + l ) .  

Let A be the 

Jennings' theory relates the series {d~} and {r~} as follows: 

E rnzn : H (1 + Z n 71- Z 2n ~- ' ' "  ~- Z(P--1)n) dn. 

n)O n:>l 

Cf. [Pa, Chapter 3]. Turning to the underlying ring A, we let 

sn = dimh/M ( M n / M  n+ 1) 

be the Hilbert-Poincar~ series of gr(A). Denote its generating function by fh (z) = 

~n>0  S~ zn " Recall that A / M  = Fq where q = p% 

THEOREM 3.5: Let G be a A-perfect group, and let d = dim(G). 

(1) fG(z) = de(fA(z) -- 1). 

(2) fG(z) is a rational function. 

(3) The series {cn} grows polynomially with n. 

(4) The series {dn} grows polynomially with n. 

Proos For n > 1 we have 

c a : dimFp((M'~/M'~+l) (d)) = d.  d im~p(Mn/M '~+1) 

= de. d im~q(Mn/M ~+1) = de .s~ .  

This proves the first part. 

The second follows from Hilbert-Serre Theorem [AM, p.l17], showing that fh 

is a rational function of z. Similarly, since {s~} grows polynomially [AM, p.l19], 

the same holds for {c~}. Finally, we always have D~+I _~ 7~+1, and this implies 

d n < _ E d i ~ E c i  
i<_n i<_n 

for all n. Since the right-hand side grows polynomially we are done. | 

It is clear from 3.2(3) that if G is a A-perfect group and A has characteristic p, 

then the generating function ~ d~z ~ is also rational. However, this is not true 

without the restriction of the characteristic; for example, for G = ~p we have 

d~z~ = ~ > o  zpl which is not a rational function. 
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Note that, unless p = m = 2, the group G = SL,I~(A) is A-perfect, and thus 

dn(G) grows polynomially by 3.5. In fact it can be shown that d,(G) grows poly- 

nomially for every finite index pro-p subgroup of GL,~ (A), without any restriction 

on p, ~ ,  A. 

It follows from part 1 of Theorem 3.5 that, if G is an  ]Fp [[t]]-perfect group, then 

17~/7~+11 = pd for all n, where d = dim(G) = d(G). Therefore the Nottingham 

group G = Nott(p) cannot be Fp[[t]]-perfect: indeed, its lower central factors 

have orders p and p2 [y]. 

We now draw conclusions concerning the growth of the series {r~} defined 

above. Jennings' formula enables one to compute {r~} in terms of {d~}. However, 

polynomial growth of {dn} does not imply polynomial growth of {rn}. Still, 

applying a result of Bereznyi [Be], we shall establish subexponential growth of 

(rn}. 

PROPOSITION 3.6: For every pro-p group G we have 

lim sup 1 ln(rn(G)) = lira sup 1 In(tin(G)). 
n n 

Proo~ Let a,/3 be the left and right hand side respectively. The section 

D~/Dn+I may be identified with a subspace of the Fp-linear space A~/A ~+1. 

Hence rn _> d~ for all n, so c~ > ~. 

On the other hand, Bereznyi [Be, Lemma 1, p.572] shows that if {r~} and {d~} 

are any sequences of non-negative integers satisfying ~ r,~z ~ < 1-I(1 - zn) -d~ 

(that is, the inequality holds for each coefficient), then 

lim sup -1 ln(r,~) < lira sup _1 ln(dn). 
n n 

In our case we have, 

Er zo = II( E -< I I I E  -- I I (1 -  
n > l  0 < i < p  n > l  i > 0  n > l  

Hence c~ < ~ by Bereznyi's lemma, and the proposition is proved. | 

The proposition implies that {r~} grows subexponentially (i.e. a = 0) if and 

only if {d~} grows subexponentially (/3 = 0). In view of Theorem 3.5(4) we 

therefore have: 

COROLLARY 3.7: Let G be a A-perfect group and let r~ = r~(G). Then {r~} 

has subexponential growth. 
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This corollary will be rather useful in section 5. 

We close this section with a short discussion on the relation between the growth 

of dn(G) and the growth of dn(H) for a finitely generated subgroup H of G. 

In Lemma 2 of [Be] it is claimed that, for any finitely generated group G, subex- 

ponential growth of dn(G) implies subexponential growth of dn(H). However, the 

following provides a counter-example to this lemma. Take G = Ker(SL3(Z) 

SL3(Fp)). By the affirmative solution to the congruence subgroup problem dn (G) 

is bounded; but G contains a 2-generated free subgroup H, and dn(H) grows ex- 

ponentially. It might still be true that [Be, Lemma 2] holds for pro-p groups, but 

the proof given there is erroneous. 

However, it is easy to see that, if G is a finitely generated pro-p group such 

that dn(G) grows polynomially, and H C_o G, then dn(H) grows polynomially. 

To show this let N <1 G be an open normal subgroup of G contained in H. Then 

G/N is a finite p-group, so the augmentation ideal A(G/N) is nilpotent. This 

means that 
A(a)o c A(N)Fpa, 

so A(G) cn C A(N)nFpG for all n. This implies that  

Den(G) C_ Dn(N) C_ Dn(H) for all n. 

The polynomial growth of {dn(H)} now easily follows. 

It would be extremely useful to know that, for a finitely generated pro-p group 

G, subexponential (or even polynomial) growth of dn(G) implies subexponential 

growth of dn(H) for finitely generated closed subgroups H. In view of Theorem 

3.5 and the remarks thereafter, this would imply the following: 

CONJECTURE 3.8: 

(1) A (non-abelian) s prop group cannot be embedded in GLm(A). 

(2) Every pro-p subgroup os GLm(A) satisfies some non-trivial prop identity. 

We note that  assertions (1) and (2) are actually equivalent. For more details 

and some interesting partial results, see Zubkov [Zu]. 

4. G r o w t h  f u n c t i o n s  

In this section we examine certain growth functions associated with a A-perfect 

group, such as its subgroup growth, and the growth of the number of generators 

of open subgroups. It will turn out that, up to certain constants, the growth 
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behaviour of a A-perfect group G does not depend on G or on the underlying 

ring A, as long as A/pA is infinite, i.e. G is not p-adic analytic. 

Given a finitely generated pro-p group G, let 

an = an(G) = [{H Co G [ (G: H) = n}l , 

and 

gn = gn(G) = max{d(H)  [ H Co G, (G: H) = n}, 

as in the introduction. 

If G is p-adic analytic, then {gn } is bounded and {an } grows polynomially with 

n [LM1, LM2]. In free (non-abelian)pro-p groups, {gn} grows linearly (according 

to the Schreier formula), and {an} grows exponentially [I]. 

In general, we have the following simple relation between {an} and {gn}. 

LEMMA 4.1: With the above notation we have 

k--1 
apk ~_ H pgp~ -- 1 _ pgl+gp+...+gpk-1 

V - i  < 

Proo['. It suffices to show that, for k __k 1 we have 

pgpk-1 _ 1 
apk ~ ap~-  i �9 

p - 1  

Indeed, any open subgroup H of index pk in G is a maximal subgroup of some 

subgroup H1, whose index is pk-1. There are %~-1 possibilities for the choice of 

H1. Fixing H1,  there a r e  (pd(H~) _ 1) / (p -  1) ways to choose a maximal subgroup 

H C H1. Since d(H1) _< gp~-~, the result follows. | 

The following Lie-theoretic result is the key to our analysis of the growth 

behaviour of A-perfect groups. 

PROPOSITION 4.2: Let Lo be a finite-dimensional perfect Lie algebra over Fp, 

and let L = Lo | gr(M). Then there exists a constant c such that, [or every 

proper open Lie Yp-subalgebra K o[ L we have 

d i m ( K / K ' )  <_ c . d i m ( L / K ) .  

Proof: We may assume, for simplicity, that A / M  = Fp. Let d = dim(Lo). Note 

that K 2 Ln for all sufficiently large n. Since Lo is perfect this implies that 

K ~ _D Ln for all sufficiently large n. In particular K / K '  is finite-dimensional. 
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Given a certain subset A of K whose image in K / K  I forms a basis for K / K  ~, 

we shall construct a subset B of L, linearly independent modulo K,  such that  

IA[ < ClIBI + c2 for some fixed constants cl,c2 (independent of K).  This will 

show that  

d i m ( K / K ' )  = I A] < cll B] + c2 < Cl d im(L /K)  + c2 <_ c. d im(L /K) ,  

where c = Cl + c2 (recall that  K is a proper subalgebra of L). 

This construction, which is of a combinatorial nature, consists of several stages. 

1. Let { X 1 , . . . , X ~ }  be a basis for grl(A ) = M / M  2. Then there exists a 

collection C of monomials in X 1 , . . . ,  X~ satisfying: 

(i) For each n > 0, the subset Cn of monomials of degree n in C forms a basis 

for grn(A ) = M n / M  n+l. 

(ii) C is an order ideal of monomials, namely, if X E C and Y divides X,  then 

Y E C .  

The construction of C is rather standard; see, e.g., [St, p.59]. 

2. Clearly, every element a of L = L0 | dr(M) may be uniquely expressed 

as a = ~ x  ax  | X ,  where X ranges over C and ax 6 Lo (note that  al = 0). 

Consider the lexicographic ordering < on C, and define the l e ad ing  t e r m  of a 

by lt(a) = a z  | X ,  where X is the minimal monomial in C for which ax ~ O. 

The l e ad ing  m o n o m i a l  of a is then defined by lm(a) = X.  

3. Call a subset A C_ K forming a basis for K modulo K'  m a x i m a l  if one 

cannot replace an element a 6 A by an element a '  satisfying lm(a ')  > lm(a), thus 

obtaining another basis for K / K ' .  It  is easy to verify that  each basis for K / K '  

can be deformed in finitely many steps to a maximal  basis. 

4. Let A C_ K be a maximal  basis for K modulo K ' .  Then: 

(i) I f a  # b in A, then lt(a) # lt(b). For otherwise we can replace a by a' = a-b,  

which satisfies lm(a ')  > lm(a), contradicting the maximali ty  of A. 

(ii) For each monomial X 6 C there exist at most d elements a 6 A with 

lm(a) = X.  This is because d +  1 elements of the form ax 6 Lo are linearly 

dependent (over Fp); thus if lm(a) = X for d + 1 elements of A then it 

would be possible to increase lm(a) for some a. 

(iii) If  a 6 A then lt(a) does not lie in l t ( g ' )  = {lt(b): b 6 g ' } .  Indeed, 

lt(a) = lt(b) for b E K '  enables one to replace a by a - b, contradicting the 

maximali ty  of A. 
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5. Let A be as above and let a E A. Suppose lt(a) = ax |  and let 

Y, Z E C be monomials such that X = YZ.  Since L0 is perfect there exist 

(non-zero) elements bi,ci E Lo such that ax -- E[bi,ci].  Therefore lt(a) = 

~[bi  | Y, ci | Z]. Note that,  if bi | Y, ci | Z E l t (K) for all i, then there exist 

elements gi, hi consisting of monomials greater than Y, Z respectively such that 

bi N Y + gi, c / |  Z + hi E K. This shows that 

lt(a) + f = E [ b / |  Y + gi, c / |  Z + hi] E K' ,  

where f consists of monomials greater than X. Thus lt(a) E lt(K/),  contradicting 

a previous claim. 

We conclude that,  if X E lm(A), then any factorization X = Y Z  gives rise to 

an element b N W ~ l t (K),  where 0 r b E L0 and W E {Y, Z}. 

6. Let S = lm(A), the set of leading monomials of elements of A. Then 

IAI < dis I by property (ii) in part 4. Define a metric p on C by 

P(1-[ X~ ~' I-I X ~  ~) = m a x { i n / -  m~l: 1 < i < r}. 

Let T be a maximal subset of S satisfying 

(i) deg(X) > r for all X E T. 

(ii) p(X, Y) _ 2 for all distinct X, Y E T. 

In order to estimate the cardinality of T, note that  the union of all closed balls 

of radius 1 around elements of T, together with all the (27) monomials of degree 

at most r in X 1 , . . . ,  X ,  covers S (otherwise T may be enlarged). Since a ball of 

radius 1 (with respect to p) has at most 3 ~ elements, we conclude that 

Thus 

ISl ~ ITI3" § (2r). 

IAI <_ dISI < cliTI + c2, 

where cl = d3 ~ and c2 = d(2~). 

7. Given a monomial X = I] X~' E T, define 

x+ : II  xI x -  : I I  

Note that  deg(X+) ,deg(X - )  > 0 (as deg(X) > r), and X = X + .  X - .  Further- 

more, if X, Y are distinct monomials in T, then the sets { X + , X - } ,  { Y + , Y - }  

are disjoint (as p(X, Y) > 1). 
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8. Recall that  T C_ S = lm(A). Thus, given X C T, we may choose an element 

a E A with X -- lm(a). Apply part  5 above with Y -- X + and Z = X -  to obtain 

an element of the form b | W ~ l t (K) ,  where b E L0 and W C {X +, X - } .  The 

element b | W obtained in this way depends on X,  so let us write b = bx, W = 

W x .  

9. We can now construct the required subset B C_ L: 

B = {bx | Wx: X ~ T}. 

It  is clear from the construction of B that  B and l t (K)  are disjoint. Using part  

7 it follows that  the map X H W x  defined on T is injective. This implies, in 

particular, that  IBI = ITI, so 

IA[ ~ Cl[B[ + c2, 

by part  6. 

It  remains to be shown that  B is linearly independent modulo K.  Suppose 

not. Then for some non-zero scalars A1, . . . ,  Ak C Fp and for distinct elements 
k 

bl @ W1, . . . ,  bk | Wk of B we have ~ i=1  A~b~ | W~ E K.  

Without loss of generality we may assume that  W1 < W2 < . . .  < Wk. Thus 

bl | W1 = l t (A11EAib~  @ wi)  e l t ( g ) ,  

a contradiction. 

The proposition is proved. II 

THEOREM 4.3: Let G be a A-perfect group. Then gn( G) <_ Clogp n for all n > 1, 

where C is a fixed constant (depending on G). 

Proof: Let H Co G be an open subgroup of index n = pk in G (k > 0). Consider 

L = L(G) = Lo | gr(M) and K = K(H)  C L (see 2.10,2.12). By 2.13 we have 

(L: K)  = (G: H)  = pk , so d im(L /K)  = k (where all dimensions are computed 

over Fp). Applying the above proposition we conclude that  d im(K/K ' )  <_ ck. 

Since g ( H ' )  D_ g ( H ) '  = K'  (see 2.13), we have d i m ( K ( H ) / g ( H ' ) )  < ck, and 

this yields 

( g :  H ' )  = (K(H) :  g ( H ' ) )  <_ p~k. 

Finally pd(H) : [H/~(H)l  <_ [H/H'] <_ p~k, so d(H) <_ ck = clog,  n. 

Thus the result follows (with C = c). II 
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Note that we have actually shown rather more, namely, that 

(H: H') _< (G: H)  C 

for every (proper) open subgroup H of G. 

We can now determine the subgroup growth of A-perfect groups. 

THEOREM 4.4: Let  G be a A-perfect  group. Then, for a f ixed constant  c we have 

a,~(G) <_ nCl~ n for a11 n >_ 1. 

Proos We may assume n = pk for some k (otherwise an = 0). Applying 4.1 

and 4.3 we obta in ,  

an ~_ pgl+gp+'"+gpk-1 ~ pd+C(l+2+...+k-1) ~ pCk 2 = nClOgp n 

for a suitable constant c (depending on d and C). 

The result follows. | 

As for examples, it is shown in [Sh] (using a slightly different method) that the 

subgroup growth of SLI(Fp[[t]]) (p > 2) is at most 2n21~ n 

It is rather intriguing that  the Nottingham group has a similar type of growth, 

although it is not Fp[[t]]-perfect. Indeed, by [LGSW], if p _> 5 and an = 

an(Nott(p)), then 

an ~ 2n (l+p2-'~-~)l~ 

for all n. 

We now turn to the study of certain limits related to numbers of generators of 

open subgroups. Following [LM1] we set 

and 

= liminf{d(H) [ H Co G}, 

Ld = limsup{d(H) [ H  Co C}, 

N L  d = lim inf{d(H) [ g ~ o G}, 

N L d  = lim sup{d(H) [ H ,3 o G}. 

It is shown in [LM1] that,  for an arbitrary pro-p group G, three of these limits 

coincide, i.e. -Ld(G) = N L d ( G )  = N L d ( G ) ;  moreover, their common value is 

finite if and only if G is p-adic analytic. In that case we have -Ld(G) = dim(G), 

while Ld(G ) coincides with the number of generators of the p-adic Lie algebra of 
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G. Thus Ld(G ) is usually smaller than La(G). We refer to La(G ) as the lower  

r a n k  of G. 

The following question is then posed in [LM1]: can La(G ) be finite while -La(G) 

is infinite? In other words, is there a pro-p group of finite lower rank which is 

not p-adic analytic? 

We shall now settle this problem in the affirmative, by showing that La(G ) is 

finite for every A-perfect group whose formal group law F is defined over A0. We 

need the following combinatorial result. 

LEMMA 4.5: Let F be the free commutative semigroup on XI . . . .  ,X~. Given 

n > 1 let 

Tn = { X ~ , . . . , X ; }  U { X i X }  [ 1 <_ i , j  < r}, 

and let Fn be the sub-semigroup generated by Tn. Then F~ is co-finite in F. 

Proof'. Regard elements of F as monomials X = X 1 1 . . . X ~  ~ (hi > 0). Let 

f = r2n2(n + 1). We shall show that every monomial X whose (total) degree is 

greater than f lies in F~. Obviously, this would imply that F \ Fn is finite, as 

asserted. 

First observe that, since X ~ , X ~  +1 E T~, we have X N 6 Fn for all N > 

n(n + 1). Thus, if for all i we have nl = 0 or ni >_ n(n + 1), then 

X = X ~  1 . . . x r  n" r Fn.  

So suppose this is not the case. Assuming deg(X) > f it follows that ni > 

rn2(n + 1) for some i. Without loss of generality we may therefore write 

nl ~ n2 < . . .  K nk < n(n + l) K nk+l <_'"<__n~, 

where 1 _< k < r and. n,. > rn2(n + 1). Consider the monomial 

k k 
n i ;q'~ Y : I~ (xixn)ni -~-(~I Xi ) x r  ' 

i=1 i=1 

where m = n(nl + . . .  + nk) <_ nkn(n + 1) <_ ( r -  1)n2(n + 1). 

It is clear that Y E F,~. Let 

Z = X ~+1 ~r-~ n.-m k+l " " X r - 1  " X r  �9 

Note that n k + l , . . . , n ~  >__ n(n + 1) and that nr - m >__ n2(n + 1). Therefore 

Z E Fn by previous arguments. Finally, X = Y Z  r F~. 
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The result follows. | 

The main point of this construction is that  {Fn} is a series of d-generated 

cofinite sub-semigroups of F where d = r 2 + r, with the property that  Fn _C F n. 

In fact it can be shown that  no such series exists with d < r 2 + r. Thus, under 

a suitable terminology, the free commutative semigroup F = (X1 . . . .  , X~) has 

finite lower rank (which is equal to r 2 + r). 

As a consequence we see that  any commutative affine algebra k[a l , . . . ,  a,.] has 

a series of d-generated subalgebras Rn (without 1) of finite co-dimension, such 

t h a t  Rn Q_ ( a l , . . . ,  a~) n, where again d = r 2 + r. 

We can now prove: 

THEOREM 4.6: Let G be a A-perfect group de/ined over A0. Then G has finite 

lower rank, i.e. Ld(G ) < oc. 

Prod: There exists r such that  A is an epimorphic image of A = A0[[X1,. . . ,  

X~]]. Let N be the maximal ideal of A. Since the formal group law F is defined 

over Ao, it gives rise to a A-perfect group H = (N (d), F)  where d = dim(G). 

Now, N is mapped onto M, so G is an epimorphic image of H (see 2.3). It  

therefore suffices to show that  H has finite lower rank. Thus we may assume 

that  G = g and A = A0[[X1 . . . .  ~ X~]]. 

Note that  the maximal ideal M of A is generated by X I , .  �9 X~ and p = p .  1 

(which may be 0). If p is non-zero in A, we set X~+I = p and increase r by 1. 

This ensures that  X I , . . . ,  X~ generate M. 

We shall now show that,  in this situation, the lower rank of G is at most 

d(r 2 + r). 

Let L = L(G) = Lo | gr(M).  For a monomial X in X1 . . . .  , X~, define L x  = 

Lo | X.  By abuse of notation we shall also regard every such monomial as an 

element of the semigroup F defined in Lemma 4.5. 

Then Lx  (X  E F) are linear subspaces of L, and L is spanned by these sub- 

spaces. Since L0 is perfect, we have 

[Lx, Ly] : [L0 | X, L0 | Y] = [L0, L0] | X Y  = L x y  

for all X, Y ~ F. 

Given a monomial X E F, let M x  C_ M be the closed subring (without 1) it 

generates in A. Let Gx = G(Mx)  be the corresponding subgroup (note that  we 

need the assumption that  F is defined over A0 to conclude that  Gx is a subgroup). 
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Now, since M is mapped onto Mx (in various ways), Gx is an epimorphic image 

of G. This yields 

d(ax) < d(a) = d for all X E F. 

Let F .  = (Tn) be as in Lemma 4.5. Given n _> 1 define a (closed) subgroup 

Hn C_~aby 
Hn = (Gx: X E :In). 

Clearly, [Tnl = r 2 + r ,  so 

d(Hn) <<_ Z d(ax)  <<_ d(r 2 + r). 
XET~ 

Note also that Hn C_ G~ for all n, so H,~ ---+ 1 in the topology of G. 

To prove the theorem it remains to establish the following: 

Claim: H~ is open in G for all n. 

To show this fix n and let K = K(H,~) be the Lie subalgebra associated to 

Hn. It suffices to show that  L /K  is finite-dimensional (over Fp), as this implies 

(G: gn )  < co. 

Let 

r* = { x  E F: Lx c__ K}. 

First observe that,  if X E T, ,  then H,~ D_ Gx, so K(H,)  D_ K(Gx) D_ Lx.  
Therefore Tn C_ F*. Next, assuming X, Y E F* we obtain 

Lxy  = [Lx, Ly] C_ [g, g] C_ K, 

and thus X Y  E F*. It follows that  r* is a sub-semigroup of F containing Tn. 

Hence F* _D (T~) = r,~. 

Applying Lemma 4.5 we conclude that F* is cofinite in F, and this implies that 

dim(L/K) < oo, as required. I 

The simplest example of a pro-p group of infinite rank and finite lower rank 

obtained in this manner is G = SL21(Fp[[t]]). Our proof gives Ld(G ) _< 6 in this 

case. However, by a more delicate analysis we can show that Ld(G ) <__ 3. It is 

not clear whether the lower rank is 2 or 3 in this case (in fact the two authors 

have conflicting views on this matter).  

Nevertheless, non p-adic analytic pro-p groups of lower rank 2 do exist: it is 

shown in [LGSW] that,  for p _> 5, the Nottingham group Nott(p) has lower rank 

2. 
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5. G o l o d - S h a f a r e v i c h  inequa l i t i e s  

In this section we consider presentations of A-perfect groups. We do not know 

whether they are always finitely presented, but we show that,  for A = Fp[[t]], 

this is the case in some typical situations. We also show that A-perfect groups 

always satisfy the Golod-Shafarevich inequality. 

A key to this section is the interplay between presentations of pro-p groups and 

of abstlact groups, particularly arithmetic groups over a global field of character- 

istic p. This interplay is in both directions: we use results on arithmetic groups 

to deduce finite presentability of certain A-perfect groups; and we apply our re- 

sults on the growth of pro-p groups to deduce the Golod-Shafarevich inequality 

for certain arithmetic groups. 

The connection between presentations of pro-p groups and abstract groups is 

based on the following easy but crucial lemma from [Lull. 

LEMMA 5.1: Let F be an abstract group with a presentation (X; R) where X 

is a finite set of generators, and R is a set of relations. Let F~ be the pro-p 

completion of F. 

(1) <X; R> is a presentation of F~ in the category of  pro-p groups. 

(2) I f  d(rp) < IX], then F~ has a presentation with d(F~) generators and 

JR1- (IX[- d(r~)) relations. 

Let G be a simply connected simple Chevalley group and let k be a global field 

of characteristic p. Let S be a finite set of primes (i.e. valuations) of k. Set 

C o s = { x E k : v ( x ) > _ O  for e v e r y v � 9  

Given q = pC, choose S and a fixed valuation Vo such that  IS I > 3, vo ~ S, and 

the residue field of vo is Fq. Let K be the completion of k with respect to vo. 

Then K is isomorphic to Fq ((t)), and the completion (Os)vo of COs with respect 

to Vo is isomorphic to Fq [It]]. 

Let F = G(COs). Since ISI > 3 it follows from results of Behr [B1,B2] that F is 

finitely presented. F is dense in G((Os )vo )~  G(Fq[[t]]). 

Denote 

G 1 = Ker(G(Fq [[t]]) ----* G(Fq)), 

and 

F 1 = F N G  1. 
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Now, G(Os) has the strong approximation property [Pr] and satisfies the con- 

gruence subgroup property [Ra]. Hence 

i i 

c ( o s )  = ~ c(o ) = ~ 1 ]  
v~S 

Then 

rq  = 1 ]  • 
vf~SU{vo} 

Note that  GI((OS)~o) is a pro-p group; in fact in most cases (see [We, Lemma 

5.2]) Gl((OS)~o) is a A-perfect group, where A = ]Fq[[t]]. 

On the other hand, G((Os)~) has no pro-p quotient for almost every v, for 

otherwise C ~  would be a quotient of G(Os), which is impossible (as G(Os) is 

finitely generated). 
i 

Now, the pro-p completion F 1 of F 1 is the maximal pro-p quotient of I q .  The 
i 

above decomposition of 1 "1 therefore implies that 

1 r;6 : G I ( ( O S ) v o )  X B ,  

where B is a finitely generated pro-p group (in most cases B is finite or even 

trivial). 

As mentioned above, F - and hence F 1 - is a finitely presented abstract group. 

Thus F 1 is a finitely presented pro-p group (see 5.1). Since 

cl(]~q[[t]]) -----~'~ c l ( (OS)v0)  ----~ F1/B 

and B is finitely generated, we see that GI(Fq [[t]]) is finitely presented as a pro-p 

group. 

Without aiming at the most general result, we can now deduce: 

PROPOSITION 5.2: Let G be a Chevalley group scheme (e.g, G = SL,~), and 

G 1 = Ker(G(Yq [[t]]) ~ G(Yq)). Then G 1 is a finitely presented pro-p group. 

Remark 5.3: G 1 above is an Fq [[t]]-standard group; as such it is Fq [[t]]-perfect, 

except when q = 2 r and G = A1 or Cn. 

We do not know whether Proposition 5.2 holds also for rings A of Krull dimen- 

sion larger than 1. 

We now turn to the Golod-Shafarevich inequality, established originally for 

finite p-groups, and then for wider classes of pro-p groups. It is now known for p- 

adic analytic pro-p groups (see [K],[aul]), for soluble pro-p groups (Wilson [W]), 
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and for pro-p groups which do not have non-abelian free abstract subgroups (Wil- 

son and Zelmanov [WZ]). The following result establishes the Golod-Shafarevich 

inequality for a new class of pro-p groups. 

PROPOSITION 5.4: Let G be a A-perfect group and (X;R)  a minimal pro-p 

presenation of G O.e. IX] = d(G)). Then [R[_  [X[2/4. 

Proof: Let rn = r,~(G) be as in section 3. It follows from [Lul] that the 

convergence of ~ r,~z '~ for 0 _< z < 1 already implies the Golod-Shafarevich 

inequality for G. In particular, subexponential growth of {rn} suffices. The 

desired conclusion now follows from Corollary 3.7. | 

A Golod-Shafarevich inequality for a pro-p completion of an abstract group P 

implies a similar inequality for F, as shown in [Lul]. By combining the current 

discussion with the arguments from [Lul], it is easy to deduce the following 

corollary for abstract groups. Define dab(F) = d(P ab) = d(r/r ' ) ,  and def(F) = 

s u p { ] X ] -  [R[} where (X; R) ranges over all presentations of P. 

PROPOSITION 5.5: Let G be a Chevalley group scheme, and let k, Os be as 

before. Suppose ~-~-~s rank(G(kv)) > 2, and that if char(k) = 2 then G # 

A1, Cn. Let F be a finite index subgroup of G(Os). 

(1) If (X; R) is a presentation ofF,  then 

IRI _> dadr)2/4 + [XL - d o d r ) .  

(~) 

l iminf{def(A): A a finite index subgroup ofF}  = -oo .  

This extends Theorem 4.2 of [Lull, dealing with the characteristic 0 case. We 

omit the detailed proof, and instead make two remarks. The first is that the 

pro-p completion of Y in the proposition is not necessarily an Fq[[t]]-standard 

group, but it is commensurable with such. Using arguments from the end of 

section 3 it is easy to show that subexponential growth of {r ,}  is inherited by 

commensurable groups. Consequently, a group which is commensurable to a 

A-perfect group will also satisfy the Golod-Shafarevich inequality. The second 

remark is that the exclusion of p = 2 and G = A1, Cn is very likely not needed. 

To cover this case one needs to generalize the theory developed in section 3 in 

order to deal with A-standard groups which are not A-perfect, but are 'nearly 
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A-perfect' in some sense (e.g. finitely generated). Some preliminary results in 

this direction were recently obtained by Inga Levich. 

6. Deformat ions  of  Galois representations 

Let S be a finite set of rational primes, and G = GQ,s the Galois group over 

Q of a maximal algebraic extension of Q unramified outside S. In [M] Mazur 

(following some ideas of Hida) initiated a systematic study of the collection of 

p-adic representations p: G ~ GLn(Zv) lifting a given representation ~: G -~ 

GLn(Fp). In particular he showed the existence of a universal lift ~: G 

GLn (A) where A is a complete Noetherian local ring of the type discussed here. 

In [Bo] Boston considers the case n = 2, p > 2 and S containing p. He denotes 

by K the fixed field of Kerp and by L the maximal pro-p extension of K unram- 

ified outside the places above S. As Ker(GL2(A) ~ GL2(Fp)) is a pro-p group, 

it follows that the universal representation ~ factors through Gal(L/Q). Boston 

posed the following: 

CONJECTURE A (NON-INJECTIVITY) [Bo,p.186]. The universal deformation 

~: Gal(L/Q) ~ GL2(A) is never injective. 

As a method to prove the conjecture he posed a second one which implies the 

first: 

CONJECTURE B [Bo,p.187]. If P is a finitely generated pro-p subgroup of 

GL2(A), where A has Krull dimension r, then there is a constant C (depend- 

ing on P)  such that  

d(V) < C(P: U) ~ 

for all subgroups U C.o P. 

In other words, this means that  9n(P) <_ Cn("-U/r for all n. 

Let us first consider conjecture B, starting with the case r = 1. While it is cer- 

tainly true in characteristic zero (as observed in [Bo]), it is false in characteristic 

p, since Fp [[t]]-standard groups have infinite rank (see 2.7,2.8). 

In the general case, if P is an open subgroup of a A-perfect group, then Theorem 

4.3 provides a logarithmic bound on g,~(P), which is obviously sharper than the 

bound appearing in conjecture B whenever r > 1. On the other hand, the 

following example shows that  for arbitrary closed subgroups no bound better 

than the trivial linear one exists. 
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Example 6.1: Let A = Fp[[t]] and let P be 

ated by the matrices 
l + t  

0 

and (,,  
0 1 

the closed subgroup of GL~(A) gener- 

o) 
1 

). 
It is straightforward to verify that 

Let Km = Ker(P  ) Cpm). Then (P: Km) = pm and d(Km) = pro. Thus 

gn(P) >- n for all pth powers n. 

We note that  this construction can be immitated over any ring A which is 

not a finitely generated p-adic module; indeed, factoring out pA we may assume 

that A is an infinite complete local ring of characteristic p, so it has a subring 

isomorphic to Fp [It]]. 

The next result settles conjecture A of Boston in the affirmative. 

PROPOSITION 6.2: The universal representation "fi: GaI( L / K ) 

injective. 

, GL2(A) is not 

Proof: Let P = Ker(GaI(L /K)  , GL2(Fp)). Then P is a p r o p  group; as 

shown in [Bo] (see Proposition 3.1 there, or remark 3 on p.187) def(P)  > 2, i.e. 

P has a representation with at least two more generators than relators. By a 

theorem of Romanovskii [R] this implies that  two of the generators of P generate 

a free (non-abelian) pro-p group F. By a result of Zubkov [Zu] such a group F 

cannot be embedded in GL2(A). Since F C_ Gal (L /K) ,  the map ~ cannot be 

injective. | 

As mentioned in section 3, we conjecture that  non-abelian free pro-p groups 

cannot be embedded in GLn (A) for any n and A. This would extend the above 

proposition for n-dimensional representations. 
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